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Abstract

Alzheimer's disease (AD), a chronic syndrome that impacts the brain, is the most

prevalent form of dementia. Dementia is a brain disease that severely affects an indi-

vidual's ability to perform daily activities. It starts slowly affects the brain and creates

a loss of memory, language, problem-solving and other thinking abilities. Hence, early

detection is essential to avoid the severity of this illness. Neuroimaging techniques

are widely recommended diagnosing approaches by medicos for early AD detection.

However, detecting AD using imaging is a challenging and time-consuming task for

human expertise. Many machine learning techniques already exist in automatic AD

stages detection, but these techniques are failed to handle main issues in AD detec-

tion systems such, as preserving and identifying precise biomarker regions certainty

handling and; in this research, a new convolution-based AD stages detection frame-

work is introduced to resolve the earlier detection system's challenges and issues.

The first two convolution layers contain resizing, adaptive filtering, and adaptive his-

togram equalization techniques to enhance the image quality, preserving biomarker

features. The third layer contains the Voxel-based Morphometry (VBM) technique to

segment the exact biomarker regions of AD stages from brain MRI images. The seg-

mented biomarker feature is extracted and selected in the fourth and fifth layers to

identify exact significant biomarker features to reduce the overfitting problem during

the model training. Finally, the new food source direction investigation feature of the

fish swarm optimizer (FSO) is incorporated in the deep Siamese neural network

(DSNN) classification phase, which reduces the uncertainty issue during model train-

ing. The efficiency is evaluated using ADNI, AIBL, and OASIS database MRI images

with various accuracy metrics. The evolution results show that the new framework is

obtained a higher accuracy rate of 99.89% in AD stages detection than the compari-

son classifiers.
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1 | INTRODUCTION

AD is a permanent progressive neurodegenerative disorder (Ebrahimi-Ghahnavieh et al., 2020) and the most widespread type of dementia, con-

taining an anticipated 60%–80% of all dementia cases. It usually starts in middle or old age, probably initiated by abnormal protein growth in and

around the neuron. It leads to a steady weakening in memory. Clinical stages (Kazemi & Houghten, 2018) of AD are cognitive normal (CN), Mild

cognitive impairment MCI, significant memory concern (SMC), and Alzheimer's disease (AD) (Solano-Rojas et al., 2020). The patient with the CN

stage of AD generally does not have any AD symptoms such as depression, MCI or dementia. SMC is self-reporting considerable memory appre-

hension from the patient, measured by the cognitive variation index and clinical dementia rating of 0. At this stage, patients score within the nor-

mal range of cognition. MCI patients have reported subjective memory concern either alone or clinician; it is classified as early and later stages

MCI. AD's final stage is a progressive disease, where dementia signs slowly worsen over a few years. Present medication cannot stop the disease

from developing; however, it can provisionally slow the worsening of dementia signs and enhance life quality for those with AD. Therefore, early

detection of all the AD stages (Ju et al., 2019) is essential to control the development of MCI to AD (Beheshti et al., 2017). The diagnosis is based

on clinical examination and comprehensive interviews of the patient and their relatives, and these approaches are difficult and time-consuming

tasks. Therefore, AD is currently diagnosed by Neuroimaging (Shi et al., 2017), cognitive tests and Cerebrospinal Fluid Analysis CFA. Brain Neuro-

imaging techniques are widely recommended diagnosing approaches by medicos for early AD detection (Chen et al., 2018). There are three sub-

sets of Alzheimer's disease based on the distribution of tau-related pathology and regional brain atrophy: normal, limbic-predominant, and

hippocampal-sparing. Some of the neuroimaging techniques (Lu et al., 2018) for examining AD are X-ray, computerized tomography (CT) scan and

positron emission tomography (PET) and MRI (Faturrahman et al., 2017). The brain 3D MRI (Mori et al., 2016) technology can deliver clear images

of parts of the brain that can be seen with an X-ray, CT scan, making it predominantly valuable for diagnosing the pituitary gland and brain stem.

Therefore, 3D MRI images are taken for the learning and prediction of AD's biomarkers features. Strong learning algorithms must process and

detect the AD disease stages (Nawaz et al., 2020) using 3D MRI brain images for high throughput. There are lots are machine learning algorithms

(Aderghal et al., 2018; Cheng & Liu, 2017; Dolph et al., 2017; Jha & Kwon, 2017) that already exist in early AD stages detection approaches. Most

of the existing AD detection techniques (Gupta et al., 2019; Kumari et al., 2020) failed to handle main issues in detection systems such as preserv-

ing biomarker region identification, uncertainty handling and overfitting avoidance. In this research, the following techniques are incorporated in

the detection system to achieve the challenges; rescaling, adaptive filtering, and adaptive histogram equalization techniques have been incorpo-

rated to enhance the input image quality and preserve biomarker features. The VBM technique focuses on segmenting the exact biomarker

regions of AD from the MRI image. The biomarker feature extraction and selection techniques help identify the significant biomarker features,

reducing the overfitting problem during the model training. The fish's new direction following the function-based food investigation feature of the

FSO is incorporated in the DSNN model helps reduce the uncertainty issue. Hence, the new classifier efficiently predicts uncertain brain MRI

images during the testing process. The new classification approach's efficiency is compared with various existing deep learning-based classifica-

tion approaches discussed in a related study. To enhance the quality of the input image and preserve biomarker features, this research used

rescaling, adaptive filtering, and adaptive histogram equalization techniques in the detection system. The VBM technique aims to identify the spe-

cific biomarker regions associated with Alzheimer's disease from an MRI image.

The research's organization work is explained in the subsequent order; Section 1 describes the introduction of AD disease and diagnosing

techniques and problem definition. Section 2 describes the recent research and methodologies utilized for the AD detection system. Section 3 dis-

cusses image database information and the methodologies used in this research. Section 4 describes the evaluation results of the classification

approach and discussion. Finally, Section 5 describes these research findings and feature the research conclusion. The classification model's

detailed descriptions and evaluation performance are explained in the subsequent sections. The consequent section describes the literature

review in detail.

As many machine learning techniques exist for AD stages detection, whereas these techniques fail to address some of the most important

issues in AD detection systems, such as preserving and identifying precise biomarker regions certainty handling and; in this research, an AD stages

detection framework based on convolutional neural networks is introduced to resolve the earlier detection system's challenges and issues,

as well.

2 | LITERATURE REVIEW

Several studies have been investigated neuroimaging based on the early stages of AD detection. This section discusses the various related studies

of MRI image processing methodologies and various researches on AD detection. This research (Gupta & Verma, 2020) designed an extension of

the 1-D adaptive filter in 2D form and a new 2D adaptive filter. The performance evolution result shows that the new adaptive filter achieves

superior performance than other comparison filtering approaches, and it is useful for the reconstruction of the biomedical image. This study

(Singh et al., 2020) introduces a novel framework for robust contrast enhancement and multiplicative noise suppression and demonstrates its effi-

ciency utilizing an extensive range of clinical ultrasound scans. This framework's feature enhancement phase utilizes an enhanced CLAHE
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technique for improving the texture and contrast of the ultrasound video. This research (Spalthoff et al., 2018) shows that the various facets of

morphology can be divided into a meaningful full manner and how the various morphometric constraints can be utilized to distinguish effects. It

helps in the identification of marker relevance. The (Damodaran et al., 2017) study established a new feature selection approach for hyperspectral

image classification. The ‘new class separability measure’ based on Surrogate Kernal and Hilbert Schmidt independence criteria (HSIC) has been

supported by empirical kernel maps in the RKHS. In the research (Garg & Dhiman, 2020), feature extraction and reduction are incorporated in

content-based image retrieval techniques. The approach contains complete structural feature extraction and the grey level co-occurrence matrix

(GLCM) descriptor to extract the image's texture's statistical features. The GLCM based feature extraction techniques help classify the CORAL

dataset information with maximum accuracy. The research (Lucas et al., 2020) is developed a wavelet, transform-based feature extraction tech-

nique, which is combined with an evolving neural network to detect and locate high impendence faults in a time-varying distributed generation

system. This approach gives promising results in terms of accuracy and robustness. In this research (Al-Kadi, 2017), the Gabor filter energy has

used each magnitude response's output, combined with four other fixed resolution texture signatures with and without cell nuclei segmentation.

The maximum accuracy rate has been obtained during the evaluation when combining the Gabor filter energy and meningioma sub-image fractal

signature. In this research (Ye et al., 2018), an improved artificial fish swarm optimizer is introduced for weapon target assignment problems in the

air defence system to improve the assignment rate. The individual visual of artificial fish and genetic operator in PSO are incorporated to avoid

local extremum traps. The above-discussed methodologies' collective features are taken to develop a convolution layer to the AD detection

framework. In this research (Liu et al., 2019), a deep learning model exploiting the Siamese neural network learned on paired lateral inter-

hemispheric areas is utilized to control and differentiate the power of entire brain volumetric irregularity. The approach utilizes the MRI Cloud

pipeline to provide low-dimensional volumetric features of pre-defined atlas brain structures and a novel non-linear kernel trick to standardize

these features to condense batch possessions across datasets and populations. The DSNN perform well on some metrics by clearly encoding the

irregularity in brain volume.

Above Table 1 shows the recent related study on AD stages detection approaches. It contains a reference, Database, samples counts of AD

stages, imaging/input types, the research contribution, and efficiency obtained by the methodologies. Most of the research papers discussed in

this section Utilized CNN and its categories of models for detecting various AD stages. Few authors are investigated learning concepts by using

CNN models to improve prediction accuracy. These CNN classifiers perform well, especially on image datasets. All the AD classification models

discussed in this section perform poorly with uncertain images samples. Very little research included preprocessing phases like rescaling and

enhancement. The framework for image enhancement has used sliding window adaptive histogram equalization approaches. For the first time,

this method of MRI image equalization does not use just one histogram to redistribute the image's lightness value. Therefore, the edge of the

brain MRI image slices is enhanced, making it ideal for local contrast. Most of the approaches are failed to focus on exact biomarker regions and

their feature information. The early CNN model has overfitting issues because of too much image feature information. According to early studies,

none of the research work addresses these issues. Therefore, a strong classification model has been required to detect the various AD stages

without the issues mentioned above. In this research, the following methodologies are incorporated into the classification framework to resolve

the gaps' research. The rescaling, adaptive filtering, and adaptive histogram equalization techniques have been incorporated to enhance image

quality, reduce the automation system's storage capacity, and preserve biomarker features. The VBM technique segments the exact biomarker

regions of Alzheimer's disease from the MRI image. Utilizing the biomarker feature extraction and irrelevant feature information reduction tech-

niques utilization help identify the significant biomarker features, reducing the overfitting problem during the model training. The fish swarm

optimiser's following behaviour in the DSNN network helps optimize the uncertainty issues.

2.1 | Objectives

This research's main objective is to reduce the uncertainty and overfitting issues, focusing on biomarker region preserving and identification issues

to train the biomarker information of AD stages. The research objective fulfils the research gaps and improves the classification model's perfor-

mance in AD stages detection. The classification model's performance has been compared with existing traditional and recent CNN models, and

the efficiency is tested with various accuracy metrics. The subsequent section discusses the methodologies utilized to process the image for

detecting AD stages.

3 | METHODOLOGIES OF FSODSNN BASED AD STAGES DETECTION

Figure 1 illustrates the AD detection process; According to the AD detection system, initially, the 3D MRI brain image had been collected from

patients in scan centres. The MRI scan image has been taken as input to the detection system. In the second stage, all the input MRI images are

resized in common size. In the first two convolution layers, filtering and image enchantment techniques have been applied to improve the image's

quality. The third convolution layer is responsible for VBM based biomarker region extraction from the enhanced image. The fourth convolution
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performs the process of the biomarker features, and the fifth convolution layer is responsible for the significant selection of biomarkers. The con-

solidated convolution features (constructed feature vector) in deep, fully connected utilized to train the DSNN model during the model training.

Next, calculate the loss and backpropagate the network based on the loss value and update the weight using FSO. Finally, biomarker features are

trained to create patterns and generate prediction reports (detect AD stages).

3.1 | 3D MRI data acquisition

Generally, the input image has been collected from the 3 Tesla T1 weighted imaged MRI scanner. However, in this research, the 3D MRI (Wee

et al., 2019) baseline images are taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, obtained from 3 Tesla T1 weighted

images. The structural T1 weighted MRI scan is obtained utilizing 1.5 T or 3 T scanners. The typical 1.5 T attainment variables repetition time

(RT) = 2400 ms, minimum full echo time (ET), inversion time (IT) = 1000 ms, flip angle = 8�, field of view (FOV) = 240 � 240 mm2, acquisition

matrix = 256 � 256 � 170 in x, y, and z dimensions. Capturing a voxel size of 1.25 � 1.25 � 1.2 mm3. The acquisition parameter value of 3 T

scans are RT = 2300 mm, minimum full of ET, IT = 900 ms, flip angle = 8
�
, FOV = 260 � 260 mm2, acquisition matrix = 256 � 256 � 170, Cap-

turing a voxel size of 1.0 � 1.0 � 1.2 mm3. The DSNN model is trained using the consolidated convolution features (built feature vector) deep,

completely connected. Backpropagation and weight updates are done using FSO, which estimates loss and backpropagates the network. In the

end, biomarker characteristics are taught to establish patterns and generate forecast reports (detect AD stages).

The overall AD dataset is separated into two sets as test and training; it contains four different classes such as non Demented/CN, very mild

Demented/SMC, mild Demented/MCI and Moderated/AD. These MRI images are collected from various databases, discussed later in this

section.

Table 2 contains overall images collected from the various data sources like ADNI, AIBL and OASIS. Alzheimer's Disease Neuroimaging Initia-

tive (ADNI) database (ADNI, n.d.) is categorized into four types of datasets ADNI-1, ADNI-GO(Grand Opportunities), ADNI-2, ADNI-3. The ADNI-

1 & ADNI-GO jointly contains 400 SMC, 400 MCI, 200 AD. The ADNI-2 contains 150 ND, 150 SMC, 150 MCI and 150 AD. The ADNI-3 contains

133 ND, 151 MCI, 87 AD. The Australian imaging Biomarker & Lifestyle Flagship Study of Aging (AIBL) (AIBL, n.d.) database contains more than

1000 participants. The dataset contains the images of AD, MCI and CN. Open Access Serious of Imaging Studies (OASIS) dataset (OASIS, n.d.) col-

lected from nearly 1000 participants. It contains 609 CN, 489 MCI patients MRI images. The collected MRI images are utilized for the analysis

and detection of stages of AD.

F IGURE 1 General structure of FSODSNN based AD stages detection
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3.2 | Resizing

The input MRI images have been resized to reduce memory usage and increase classification performance. All the input image sizes are normal-

ized during the resizing process as 240 � 256 � 176 voxels images are, after pre-processing, resized as 96 � 96 � 64, the resizing range

[96 96 64]. The rescaled image quality needs to enhance for better prediction. The normalization range of the input image is rescaled [0, 1]. The

minimum range for normalization is 0, and the maximum range is 1. This process facilitates the reduction of the memory utilization of the stages

AD detection system.

3.3 | Adaptive filtering

Noise removal is an essential step in preprocessing to preserve the MRI images' biomarkers (edge of brain neuron); it helps predict performance.

The Gaussian (white) noise in an MRI image reduces prediction accuracy. The adaptive filtering approach produces better filtering results than lin-

ear filtering. For better classification and memory usage, input MRI images were resized. It is possible to resize all of your images to the same size

using the pre-processing step, which normalizes the dimensions of all of your images. For more accurate forecasting, the image quality after

rescaling must be improved. [0, 1] is the new normalization range for the input image. It preserves edges and other high-frequency parts of an

MRI image. The mathematical derivation of the adaptive filtering is as follows,

bf a,b,cð Þ¼ g x,yð Þ� σ2η
σ2L

 !
g a,b,cð Þ�mL½ � ð1Þ

where in Equation (1) the σ2η denotes the overall noise, σ2L denotes local variance of the local region, mL denotes local means and g a,b,cð Þ denotes
the noisy image's voxel values at the position a,b,cð Þ. The notations s2h ,s

2
L indicates noise variance and local variance of the specific region sxy ,

respectively. The following three conditions facilitate to filter noise and preserve biomarkers edges.

Condition 1. if s2h ¼0
� �

, return simply the value of g(x,y).

Condition 2. s2L > s
2
h

� �
, return a value close to g(x,y) (high local variance associated with edges are preserved).

Condition 3. if s2L ¼ s2h
� �

, return arithmetic mean mL.

• Simplifying the value

• A value close to high variance

• Arithmetic mean value

The noises in MRI imaging is a common issue, and it has been filtered by using the Equation (1) based on the above three conditions to pre-

serve biomarkers edges. The next essential stage of the convolution layer is image enhancement.

3.4 | Adaptive histogram equalization

The sliding window adaptive histogram equalization approaches have been utilized in the framework for image enhancement. Unlike other equali-

zation approaches, it creates several histograms; each corresponds to a distinct section of the MRI images and uses them to redistribute the light-

ness value of the MRI. Therefore, it is suitable for local contrast and enhances the edge in the brain MRI image slices. Tiling the image is to slide

TABLE 2 Overall images

Classes/Stages of AD

Samples (MRI images) CN SMC MCI AD

Train size 2560 1792 717 52

Test size 640 448 179 12
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the rectangle one voxel at a time and only additionally update the histogram for voxel by adding a new voxel row and subtracting the row left

behind. The histogram calculation's computational complexity condenses from O(N2) to O(N). N indicates the width of the surrounding rectangle.

Adaptive histogram equalization improves by transforming each voxel with a transformation function derived from the neighbourhood region. It

can also simplify as each voxel is transformed based on the square's histogram surrounding it. The resultant enhanced MRI image has been taken

as input for filtering the noise. In picture improvement, sliding window adaptive histogram equalization algorithms have been used. While previous

equalization methods employ a single histogram to spread the MRI brightness value throughout the image, this method uses many histograms that

correlate to a different portion of the image. Local contrast and sharpening of the brain slices can be achieved by using this filter.

According to the results of the performance evolution, the new adaptive filter outperforms other comparison filtering approaches and is

therefore suitable for biomedical image reconstruction. Extensive ultrasound scans were used to demonstrate the efficacy of a new framework

for robust contrast enhancement and multiplicative noise suppression.

Figure 2a,b, left corner MRI brain images and right side normalized histogram of both the image samples. The AHE approach utilization facili-

tates enhancing image quality.

3.5 | Voxel-based morphometry (VBM)

The adaptive histogram equalization based enhanced images has been utilized for ROI region segmentation. The VBM approach segment the ROI

of an image based on three voxel classes: white matter (WM), grey matter (GM), and cerebrospinal fluid (CF). The significant value of the grey mat-

ter cluster is ρ<0:05 correction. The local maxima of the various biomarker regions and voxel values are right cerebellum (20, �62, �64), entorhi-

nal area (27, 0, �20), amygdalae (�24, �2, �18), right posterior insula (38, �6, �2), right inferior temporal gyrus (57, �63, �15), and the right

inferior occipital gyrus (44, �78, �12). The biomarker regions are segmented using grey matter the significant value ρð Þ from the local maxima of

the biomarker mentioned above regions.

Figure 3 illustrates the sample pre-processed and VBM based segmented MRI brain images of four stages of AD. The MCI, AD, CN, and SMC

stages are displayed in the first, second, third, and fourth rows. The segmented biomarkers region's features are taken for feature extraction. The

MRI biomarker characteristics of the brain's segmented biomarker regions are extracted using various feature extraction methods. This study used

GLCM, Gabor, and wavelet features to extract the MRI image's biomarker information from the grey level.

F IGURE 2 Sample adaptive histogram equalization (AHE) results. (a) Sample image 1 with histogram. (b) Sample image 2 with histogram
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3.6 | Feature extraction

Different feature extraction methods are applied to extract the brain's segmented biomarker regions' MRI biomarker features. This research

applied grey-level co-occurrence matrices (GLCM), Gabor, and wavelet features to extract the MRI image's biomarker information. GLCM feature

extracts the numerical features using spatial relationships of similar grey tones.

Contr¼
XNgl

r¼1

XNgl

c¼1
r�cj j2GM r,cð Þ ð2Þ

where in Equation (2) symbol Ngl denotes the number of discrete grey level and r represents the row, and c represents column and GM r,cð Þ – grey

level co-occurrence metrics. It is used to extract the contrast feature value of the M image.

Corrm¼
PNgl

r¼1

PNgl
c¼1 rcð ÞGM r,cð Þ�μx rð Þμy cð Þ

σx rð Þσy cð Þ ð3Þ

where in Equation (3) symbol μx rð Þ and μy cð Þ denotes the mean of row and column, σx rð Þ and σy cð Þ denotes the standard deviation of the row and

column, which is used to extract the correlation feature value of the MRI image.

Entr¼�
X

r

X
c
GM r,c½ �ln GM r,c½ �ð Þ ð4Þ

The Equation (4) is used to estimate the entropy value of an MRI image. The GM r,c½ � is the grey tone spatial dependence matrix, and the r,

c denotes row and columns values, and Ngl is the number of dissimilar grey levels in the quantized image.

ClustPro¼
XNgl

r¼1

XNgl

c¼1
rþc�μx rð Þ�μy cð Þ� �4

GM r,cð Þ ð5Þ

ClustShade¼
XNgl

r¼1

XNgl

c¼1
rþ c�μx rð Þ�μy cð Þ� �3

GM r,cð Þ ð6Þ

ClustTen¼
XNgl

r¼1

XNgl

c¼1
rþc�μx rð Þ�μy cð Þ� �2

GM r,cð Þ ð7Þ

where the Equation (5), Equation (6) and Equation (7) are used to calculate the cluster prominence, cluster shade and cluster tendency values of

the segmented biomarker regions. The notation μx denotes mean of row and μy denotes the mean of the column. The GLCM based statistical rela-

tionships of various texture feature information of the biomarker textures are extracted to train the model.

F IGURE 3 Segmented sample biomarkers of CN, SMC, MCI, and AD regions
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3.7 | Gabor filter feature

The mathematic derivation of Gabor filter-based feature extraction has been represented as follows,

Enrk ¼ 1
rc

Xr�1

x¼0

Xc�1

y¼0
If x,yð Þj jk ð8Þ

where the Equation (8) is the classical method for extraction of Gabor filter based texture feature is the energy Enrk , k¼1,2 in the form of l1-norm

and l2-norm. The notation r and c are the sizes of the sub-band intensity If x,yð Þ: The Gabor energy-based texture features information of the bio-

marker textures extracted to train the model.

The 3 Tesla T1 weighted MRI scanner is typically used to gather the input picture. For the purposes of this study, the 3D MRI baseline pic-

tures were obtained using 3 Tesla T1 weighted images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 1.5 T or 3 T scan-

ners are used to acquire structural T1 weighted MRI scans.

3.8 | Wavelet

The fundamental idea of DWT is to deliver time-frequency depiction. The 2D-DWT signifies an image in terms of a set of shifted and dilated

wavelet functions ωLH,ωHL,ωHH and scaling functions ϕ that form an orthonormal basic for L2(R2Þ. Given a J-scale DWT, an image x r,cð Þ of MxM

is decomposed as follows,

x r,cð Þ¼
XN,q�1

p,o¼0
up,q,oϕp,q,o r,cð Þþ

X
BϵB

X
j¼1

XM�1

q,o¼0
wBp,q,oωBp,q,o r,cð Þ ð9Þ

with

ϕp,q,o r,cð Þ¼2
�p
2 ϕ 2�ps�q,2�pt�oð Þ,ωBp,q,o r,cð Þ,ωBp,q,o r,cð Þ ð10Þ

2
�p
2 ωB 2�ps�q,2�pt�oð Þ,BϵB,B

where the value of M is denoted as Mp ¼M=2p and the Equation (9) is used for the decomposition of the image x r,cð Þ and Equation (10) repre-

sents the derivative of the scaling function. In this research, the LH, HL, and HH are named wavelet or DWT sub-band. up,q,o ¼
Ð Ð

x r,cð Þϕp,q,odsdt
is a scaling coefficient and wB

p,q,o ¼
Ð Ð

x r,cð ÞωBp,q,odsdt denotes the q,oð Þth wavelet coefficient in scale p and sub-band B. The derivation of wave-

lets in Equation (9) and Equation (10) facilitates extracting the wavelet feature information to train the model. The above-discussed features

extraction techniques are utilized in this research to extract the biomarkers feature information from MRI images. The MRI biomarker features of

the brain's segmented biomarker regions are extracted using various feature extraction methods. This study extracted the MRI image biomarker

information using GLCM, Ga-bor, and wavelet features. The GLCM feature uses spatial relationships between grey tones that are similar in tone

to get the numerical features.

3.9 | Hilbert Schmidt independence criteria lasso HSICL based feature selection

The HSICL approach performs well on both high and low dimensional samples. Therefore, the framework has been utilized the HSICL method to

reduce more irrelevant features or significant features among extracted MRI biomarker features. The HSICL optimization has been given as

follows,

HSICL :min
a

1
2

Xo

NN,m¼1
aNNamHSIC fNN, fmð Þ�

Xo

NN¼1
aNNHSIC fNN,cð Þþλ ak k1,a1,…::,an >0, ð11Þ

The Equation (11) is also written as follows,

HSICL :min
a

1
2

Ĺ�
Xo

NN¼1
aNNḰ

NNð Þ��� ���2
F
þλ ak k1,a1,…::,ao >0 ð12Þ
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The Equation (12) is used to reduce significant features from the various extracted MRI biomarkers features. Where HSIC fNN,cð Þ¼
tr Ḱ

NNð Þ
Ĺ

� �
is a kernel-based independence measure called the empirical HSIC, tr(.) denotes the trace, λ is the regularization parameter, Ḱ

NNð Þ ¼
ΓK NNð ÞΓ and Ĺ¼ΓLΓ are input and output centred Gram matrices of MRI biomarkers features. K NNð Þ

i,j ¼K uNN,i,uNN,j
� �

and Li,j ¼ L ci,cj
� �

are Gram

matrices, K u,u0ð Þ and L c,c0ð Þ are the two kernel functions. Γ¼ Io� 1
o1o1

T
o is the centring matrix, Io is the o-dimensional identity matrix(number of

biomarker features). 1o is the m dimensional vector with all once, and :k k1 is l1-norm. The HSIC approach in the AD detection system helps iden-

tify the minimal set of biomarkers features to train the models, which helps avoid the over-fitting issue in the earlier detection system.

3.10 | FSODSNN based classifier

3.10.1 | Triple ranking loss

Traditionally, a CNN model trains to predict multiple AD classes. This creates confusion when a new class of AD stages needs to add or removed

from the dataset, so the network model needs to retrain again. However, the DSNN learns based on similarity function; therefore, it can see if the

two images are identical. This network feature helps to classify new classes of data without training again. The DSNN architecture contains the

same configurations with the same parameters and weighted sub-networks, as well as the parameter updating process has been parallelized

across both sub-networks. Therefore, the edge of the brain MRI image slices is enhanced, making it ideal for local contrast. One way to tile an

image is to slide it around voxel-by-voxel, only updating the histogram for each voxel by adding new rows and taking away the old ones. Histo-

gram computations are reduced from O(N2) to O(N1) (N).

The learning in the DSNN can be done with triple loss or constructive loss. In this research, the Triple loss function is taken to compute the

loss value. The selected features from the biomarker feature vectors are taken as input to train the DSNN model. During the model training, the

DSNN model uses the triple ranking loss function to calculate loss, where a Training Sample image/input (TS) of AD is compared with Actual Posi-

tive image/input (AP) and Actual Negative/false image/input (AN). The calculated distance between the training sample and positive sample much

be minimized, and the distance between the training sample and negative sample must be maximized. The loss value is calculated using the Triple

Loss Function in this study. In training the DSNN model, the biomarker feature vectors are used as input. The DSNN model uses the triple ranking

loss function to calculate loss during model training. The mathematical derivative of triple loss is represented as follows,

L TS,AP,ANð Þ¼max f TSð Þ� f APð Þk k2� f TSð Þ� f ANð Þk k2þm,0
� �

ð13Þ

It is imperative to reduce the distance estimated between the training and the positive samples and maximize this distance between the train-

ing and the negative samples. The triple-loss derivative's calculus is depicted here. Equation (13) is used to calculate the Loss value during the

model train process. m denotes the maximum distance threshold. The function f TS=AP=ANð Þ is used to compute the representation for three trip-

let elements. The maximum and minimum distance-based loss calculating feature of the triplet loss function helps predict loss during the bac-

kpropagation. It is used to discover the similarity among stages (MCI/AD/CN/SMC) by comparing feature vectors. Relu activation function

performs well with DSNN models, so ReLU is taken for state activation function during the model training.

3.11 | Relu-activation function

ReLU is less computational complex than sigmoid and tangent activation function and helps avoid vanishing gradient problems. Therefore, ReLU

is utilized for the state activation function in the DSNN model. The Rectified Linear Unit ReLU function max 0,zð Þ and derivative ReLU0 is denoted

as follows,

ReLU zð Þ¼ zz>0

0z≤0

	
8z ¼�1, ::1 ð14Þ

Comparing feature vectors can be used to determine whether two stages (MCI/AD/CN/SMC) are alike. A state activation function that works

well with DSNN models, like ReLU, has been used in the model training process in Equation (14).

ReLU0 zð Þ¼ 1z >0

0z <0

	
8z ¼�1, ::1 ð15Þ
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The state activation conditions of ReLu has been given in Equation (15) and Equation (15). During the model training, each node's prediction

loss and hyperparameters values have ReLu have handled the framework's state activation functionalities. The relu function activates the state

when the parameter value is between �1 to 1.

3.12 | Optimizer

The fish swarm optimizer has been incorporated in the DSNN model to identify new MRI (AD class) samples. It helps update the DSNN model's

network nodes' parameters weight during the model training and prediction. The multi-objective behaviour of the fish swarm has been utilized for

weight optimization, such as Target behaviour, Random behaviour, Teeming behaviour, Following based convergence, and Random behaviour, to

optimize the network nodes parameters weight during the hyperparameter values updating process. The position of the input is represented as

3DMRI image feature vector (attribute) A,

A¼ am1,am2,…,amnð Þ ð16Þ

In Equation (16), the DSNN model's convolution layers contract the input feature vector A. The fitness function of the target (B) is denoted as Am.

dmn ¼ an�amk k ð17Þ

Hence, in Equation (17), the derivation of dmn is used to calculate the distance between n and m of the specific attribute.

The target searching behaviour contains two conditions, in the first condition if f Bnð Þ¼ f Amð Þ then, it is considered as convergence. So it takes

value towards AmAn, otherwise randomly choose the next state An.

A
!
m ¼ if f Bnð Þ< f Amð Þ,Amþ stepa

An�Am

dmn

else,random search

8<: ð18Þ

where A
!
m denotes the new state of the input attribute and the random interval value [0,1]. The Equation (18) is used to calculate the target

behaviour function based convergence.

This phase takes fitness value for centroid

B

cenð Þ of the target attribute or neighbour attribute value Neiiatr and the group factor of the target

attribute. Checking if f Bcenð Þ=Neiiatr < ∂aBn It takes the centroid cenð Þ of attributes else, and it remains in the target position. Where ∂ represents

group factor, the range values assigned as � 0,1ð Þ. The mathematical notation of the teeming behaviour-based optimization is denoted as follows,

A
!

m ¼ if f Bcenð Þ=Neiiatr < ∂aBn,Amþ stepa
Acen�Am

dm,cen

else,targeting position

8><>: ð19Þ

Equation (19) is used to calculate the teeming behaviour-based function to convergence.

The phase computes local minima of a current neighbour of Am based convergence approach. It checks if the target attributes local minima lm

of current neighbours value is ∂aBm then takes towards local minima of current neighbour; otherwise, it chooses target behaviour value. The

mathematical notation of the following behaviour-based optimization is denoted as follows,

A
!
m ¼

if f Blmð Þ=Neifish < ∂aBm,Amþ stepa
Alm�Am

dm,lm

else,targeting position

8><>: ð20Þ

where Equation (20) is used to calculate the following based convergence functions, the fish selects position by visual range; likewise, the input

parameter of the DSNN classifier weight updating position value by choosing any one of the local minima of a neighbour as convergence value.

Likewise, whenever the new biomarker pattern of AD stages arrives for training or testing, the special new direction-finding behaviours of the fish

swarm optimizer in the DSNN classifier helps to predict the possible AD stages. In this research, the above-discussed image processing methodol-

ogies and their features are combined to create the FSODSNN model for classifying the T1 MRI brain image based on Alzheimer's disease.

The above Pseudocode 1 gives the overall functionalities of the FSODSNN based AD stages detection framework. The collective benefit of

early discussed features of this detection system helps to detect AD stages better. The performance of the FSODSNN model has been discussed

in the subsequent section.
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4 | RESULTS AND DISCUSSIONS

This section discusses the performance evolution of the new AD detection framework. The AD detection framework's excellence is determined

with various evaluation metrics (Haq et al., 2018), such as accuracy, sensitivity, specificity, error rate, Mathew's Correlation coefficient, and F-

measure. The AD stages classification system has been implemented in the MATLAB simulator. The system performance has been compared with

various existing deep classifiers such as traditional CNN, DSNN, ResNet, and VGG16. This comparison classifiers contribution to AD detection

PSEUDOCODE 1 FSODSNN based AD detection framework

Input: 3D MRI brain image

Step 1: Image accusation

A = imread(data source) // Acquire input images from dataset

h = 0, bi = U = 0.02; // initialize the population, hidden layer size, bias & learning rate

Step 2: Convolution functions

For each i = 1 to TSC // TSC ‐ Total number of sample images

RA = imresize(A, [96 96 64]) // resizing the input image

RS = rescale(RA) // Normalize the image (range from 0 to 1)

EA = adapthisteq(RS) // Adaptive histogram equalization

AF = imadaptfilt(EA) // Adaptive filtring

ROI = Vbm(AF, p < 0.05) // voxel based morphometry segmentation

For each j = 1 to TNF // TNF – total number of features

gabor[i,j] = imgaborfilt(ROI) // Gabor feature value

wavelet[i,j] = wav_fea(ROI) // wavelet feature value

GLCM = GLCM_features1(ROI) // GLCM features

Contr[i,j] = contr(GLCM)

Corn[i, j] = corrn(GLCM)

entr[i, j] = entr(GLCM)

clustPro[i, j] = clusterPro(GLCM)

clustShad[i, j] = clustshad(GLCM)

clustTen[i, j] = clustTen(GLCM)

FV[contr [i,j], corn[i,j], entr[i,j], gabor[i,j], clustPro[i,j], clustShad[i,j], clustTen[i,j]

wavelet[i,j]] // biomarker feature vector

End For

End For

Reduct_set = HSICL(FV) // feature selection

FV = Reduct_set

Step 3: Classification phase

For each t = 1 to m // (m, n) = 1to Size (FV)

For each h = 1 to n

Ø (W. FV[t] + U. h + bi) // compute Relu Ø value for state activation

If (Ø>&minus;1) &&( Ø<1)

Loss= L TS,AP,ANð Þ // triplet loss

End If

If (Loss<= Ø )

Ot // display output (predicted stage of AD)

Else

A
!
m (FV tþ1ð Þ) // update the network node weight by using FSO based back propagation

End If

End For

End For

Output: Detect stage of AD
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has been discussed earlier in a related study. The numerical data provided in the research paper for the new AD detection framework's perfor-

mance evolution is discussed in this section. Various evaluation metrics are used to gauge the effectiveness of the AD detection framework.

Accuracy Accð Þ¼ αþβ

αþβþδþ γ
ð21Þ

Matthews0s correlation coefficient MCCð Þ¼ α �β� γ �δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ γð Þ αþδð Þ βþ γð Þ βþδð Þp ð22Þ

Recall_Sensitivity Senð Þ¼ α

αþδ
ð23Þ

Specificity Specið Þ¼ α

αþ γ
ð24Þ

F�measure Fmeasureð Þ¼ 1þβ2
� �

Speci �Senð Þ
β2 �SpeciþSen
� � β¼0:5,1, _2 ð25Þ

Errorrate Erratð Þ¼ γþδ

PositiveþNegative
ð26Þ

The notations α,β,γ^δ in Equation (21), Equation (22), Equation (23), Equation (24), Equation (25) and Equation (26) denotes the true negative

and true positive, false negative and false positive, respectively. These metrics are utilized in this research to assess the performance of the AD

detection system.

Table 3 shows the consolidated performance comparison of the convolution-based FSODSNN framework with CNN, ResNet, VGG16 and

DSNN for AD stages detection. It clearly shows that the new classification framework's highest accuracy rate (99.89%) is achieved by using the

specific features of the new convolution layers functionalities in FSODSNN such as resizing, filtering, biomarker region preserving or enhance-

ment, biomarkers regions based feature segmentation, extraction and reduction are performing efficiently during the pre-processing phase.

Figure 4 illustrates that the new food source direction investigation features of FSO in the DSNN network help efficiently

optimize the image features training functionalities. The new food source direction investigation of FSO is derived as,

A
!
m ¼

if f Blmð Þ=Neifish < ∂aBm,Amþ stepa
Alm�Am

dm,lm

else,targeting position

8><>: . The AD stages detection's evaluation results show that the FSODSNN outperforms all the

accuracy metrics.

TABLE 3 Overall performance of classifiers in AD detection comparison

Dataset Classifier Accuracy (%) MCC (%) Sensitivity (%) Specificity (%) Fmeasure (%) Error rate (%)

ADNI CNN 94.82 93.98 94.23 94.32 93.88 5.19

ResNet 96.22 95.66 96.29 95.43 96.76 3.78

VGG16 98.45 98.23 98.43 98.76 98.65 1.55

DSNN 98.79 99.03 99.01 99.18 99.45 1.21

FSODSNN 99.89 99.67 99.55 99.25 99.66 0.11

AIBL CNN 94.81 93.75 94.76 94.45 93.45 5.21

ResNet 96.22 95.34 96.43 96.65 96.87 3.56

VGG16 98.45 98.45 98.87 98.74 98.98 1.73

DSNN 98.88 98.99 98.54 98.98 99.87 1.12

FSODSNN 99.67 99.86 98.81 99.28 99.45 0.14

OASIS CNN 94.86 93.65 94.65 94.99 93.45 5.14

ResNet 96.43 95.45 96.73 95.66 96.45 3.57

VGG16 98.74 97.56 98.97 97.89 98.76 1.26

DSNN 98.87 99.54 99.51 98.77 99.12 1.13

FSODSNN 99.61 99.76 99.62 99.11 99.22 0.35

Note: The values in bold letter denotes the maximum value for each metric that has been obtained by the new classification (FSODSNN) approach.
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F IGURE 5 Performance comparison of all the classifiers using AIBL dataset

F IGURE 6 Performance comparison of all the classifiers using OASIS dataset

F IGURE 4 Performance comparison of FSODSNN with other classifiers using ADNI dataset
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Figure 5 illustrates the graphical representation of the efficiency evaluation results for the AIBL dataset. The FSODSNN based AD stages

detection approach has outperformed all the accuracy metrics. It is clear proof that the new methodologies based on convolution layers function-

alities help identify and extract biomarkers regions proficiently during the model training in FSODSNN classifiers for AD stages detection frame-

work more efficiently than other classifiers.

Figure 6 illustrates that the FSODSNN based AD stages detection approach outperforms accuracy. It clearly shows that the incorporated

functionalities of convolution layers (adaptive filtering, adaptive histogram equalization based image enhancement, VBM based grey matter cluster

ρ<0:05ð Þ of biomarker region segmentation and extraction). The FSODSNN model helps detect the AD stages more efficiently than other

classifiers.

Figure 7 illustrates that the new convolution functionalities incorporated in FSODSNN based AD stages detection approach has been

obtained, promising a lesser error rate (0.11%). The minimal error rate is achieved with the help of uncertainty reduction using DSNN's triplet loss

function, which is derived in the following derivation, L TS,AP,ANð Þ¼max f TSð Þ� f APð Þk k2� f TSð Þ� f ANð Þk k2þm,0
� �

.

In Figure 8, the five different coloured curves show the graphical representation of accuracy rate comparison of CNN, ResNet, VGG16,

DSNN and FSODSNN based AD stages detection with ADNI, AIBI and OASIS datasets. Moreover, the top three blue coloured curves denote

the maximum accuracy rates of 99.89%, 99.67% and 99.61% for three datasets. The maximum accuracy is achieved by the FSODSNN model

with the help of overfitting reduction (HSICL based feature reduction) function, which is derived in the following deriva-

tion, HSICL :min
a

1
2 Ĺ�Po

NN¼1aNNḰ
NNð Þ��� ���2

F
þλ ak k1,a1,…::,ao >0.

In Figure 9, the five different coloured curves show the graphical representation of Mathew's correlation coefficient values comparison of

CNN, ResNet, VGG16, DSNN and FSODSNN based AD stages detection with ADNI AIBI and OASIS datasets. Moreover, each convolution layer's

problem-oriented functionalities in the FSODSNN framework and the new food source direction investigation features of FSO in the DSNN

F IGURE 7 Error rate comparison for ADNI, AIBI and OASIS datasets

F IGURE 8 Accuracy rate comparison curves for ADNI, AIBI and OASIS datasets
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network facilitate optimisation of the uncertainty issues efficiently. These two specific functions influence the classifier's performance to achieve

maximum Mathew's Correlation coefficient values (99.67%, 99.86% and 99.81%) in five successful rounds for three different dataset images.

In Figure 10, the five different coloured curves show the graphical representation of Sensitivity values comparison of CNN, ResNet, VGG16,

DSNN and FSODSNN based AD stages detection with ADNI, AIBI and OASIS datasets. Moreover, the top three blue coloured cures denote the

F IGURE 9 Mathew's correlation coefficient values comparison curves for ADNI, AIBI and OASIS datasets

F IGURE 10 Sensitivity values comparison curves for ADNI, AIBI and OASIS datasets

F IGURE 11 Specificity values comparison curves for ADNI, AIBI and OASIS datasets
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VBM based grey matter segmentation ρ<0:05ð Þ of biomarker region and biomarkers, texture features extraction techniques to train the AD

stages exactly. Therefore, these two convolution layer features play an essential role in achieving the maximum sensitivity (99.56%, 99.45% and

99.62%) compared to comparison approaches.

In Figure 11, the five different coloured curves show the graphical representation of Specificity values comparison of CNN, ResNet, VGG16,

DSNN and FSODSNN based AD stages detection using ADNI, AIBI and OASIS datasets. Moreover, the uncertainty and overfitting reduction

incorporated the FSODSNN approach influencing the classifier to acquire higher specificity values (99.67%, 99.14% and 99.34%) in AD stages

detections.

In Figure 12, the five different coloured curves show that the new convolution functionalities incorporated FSODSNN model has been

attained maximum F-measures values of 99.66%, 99.55% and 99.56% for ADNI AIBI and OASIS datasets, respectively.

The specific problem-oriented functionalities of each convolution layer in the FSODSNN framework and the new food source direction inves-

tigation features of FSO in the DSNN network facilitate to optimization of the uncertainty issues efficiently. These two features help achieve a

maximum of 99.89% accuracy rate in AD stages detection. The DSNN's triplet loss function and HSICL based irrelevant feature reduction function

reduce the overfitting issues. Overfitting reduces the classification framework to achieve the lowest error rate of 0.11% in AD stages detection

other four convolutions based on comparison classification approaches. The section's overall evaluation outcome shows that the AD detection

framework features, such as feature enhancement, exact biomarker region identification, and irrelevant feature information reduction, help reduce

overfitting during model training. Furthermore, an uncertain biomarker feature classification issue has been resolved efficiently with FSO's func-

tionalities in DSNN.

5 | CONCLUSIONS

Hence, the evaluation report in the results and discussion section shows that the new convolution-based AD detection framework has out-

performed all the evolution metrics compared to comparison approaches. It clearly shows that the new sample training feature of FSO in DSNN

helps resolve the uncertainty issues during the AD stages detection. The HSICL based feature reduction technique reduces unwanted feature

information during the model training, reducing over-fitting problems. So in AD stages, the detection framework predicts the stages with less error

than comparison algorithms. The suitable biomarker feature enhancement and biomarker region identification utilization helps to efficiently train

the classification model, which has improved accuracy and error reduction. This research's main objective is to resolve the uncertainty, overfitting,

biomarker region preserving and extraction issues. The overall evaluation result shows that the new AD detection model has been achieved the

objective of the research reliably. In this research, the AD stages detection has been attained a maximum of 99.89% accuracy rate and 0.11%

error rate.

The current research achieves the highest accuracy rate in the AD stages detection system; therefore, future research is trying to utilize the

heuristic approach based on pixel examination to detect AD stages with maximum forecast rate.

The primary goal of this research is to address the challenges of uncertainty, overfitting, biomarker preservation, and extraction. Overall, the

results suggest that the novel AD detection model met the study's accuracy goal. Currently, researchers are working to improve AD stage detec-

tion systems, and future study is looking to use the heuristic approach based on pixel examination to detect AD stages with the greatest

forecast rate.

F IGURE 12 F-measures values comparison curves for ADNI, AIBI and OASIS datasets
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